Paper Reading AI Learner

BoundMatch: Boundary detection applied to semi-supervised segmentation for urban-driving scenes

2025-03-30 17:02:26
Haruya Ishikawa, Yoshimitsu Aoki

Abstract

Semi-supervised semantic segmentation (SS-SS) aims to mitigate the heavy annotation burden of dense pixel labeling by leveraging abundant unlabeled images alongside a small labeled set. While current teacher-student consistency regularization methods achieve strong results, they often overlook a critical challenge: the precise delineation of object boundaries. In this paper, we propose BoundMatch, a novel multi-task SS-SS framework that explicitly integrates semantic boundary detection into the consistency regularization pipeline. Our core mechanism, Boundary Consistency Regularized Multi-Task Learning (BCRM), enforces prediction agreement between teacher and student models on both segmentation masks and detailed semantic boundaries. To further enhance performance and sharpen contours, BoundMatch incorporates two lightweight fusion modules: Boundary-Semantic Fusion (BSF) injects learned boundary cues into the segmentation decoder, while Spatial Gradient Fusion (SGF) refines boundary predictions using mask gradients, leading to higher-quality boundary pseudo-labels. This framework is built upon SAMTH, a strong teacher-student baseline featuring a Harmonious Batch Normalization (HBN) update strategy for improved stability. Extensive experiments on diverse datasets including Cityscapes, BDD100K, SYNTHIA, ADE20K, and Pascal VOC show that BoundMatch achieves competitive performance against state-of-the-art methods while significantly improving boundary-specific evaluation metrics. We also demonstrate its effectiveness in realistic large-scale unlabeled data scenarios and on lightweight architectures designed for mobile deployment.

Abstract (translated)

半监督语义分割(SS-SS)旨在通过利用大量未标记的图像和少量已标注的数据集来减轻密集像素标签注释的工作负担。尽管当前的教师-学生一致性正则化方法取得了强大的成果,但它们往往忽视了一个关键挑战:精确地划分物体边界。在本文中,我们提出了一种名为BoundMatch的新颖多任务半监督语义分割框架,该框架明确将语义边界的检测集成到了一致性正则化的管道之中。我们的核心机制是边界一致性正则化多任务学习(BCRM),它要求教师和学生模型在分割掩码及详细的语义边界上达成预测的一致性。为了进一步提升性能并锐化轮廓,BoundMatch结合了两个轻量级融合模块:边界-语义融合(BSF)将学习到的边界线索注入到解码器中,而空间梯度融合(SGF)则利用掩码梯度细化边界预测,从而生成更高质量的边界伪标签。该框架基于SAMTH构建,这是一个强大的教师-学生基线模型,采用了和谐批量归一化(HBN)更新策略以提高稳定性。 在包括Cityscapes、BDD100K、SYNTHIA、ADE20K和Pascal VOC在内的多样化数据集上进行的广泛实验表明,BoundMatch取得了与最先进方法相当的表现,并显著提升了特定边界评价指标。此外,我们还展示了该框架在现实大规模未标注数据场景以及面向移动部署的轻量级架构上的有效性。

URL

https://arxiv.org/abs/2503.23519

PDF

https://arxiv.org/pdf/2503.23519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot