Paper Reading AI Learner

Lightweight Deep Models for Dermatological Disease Detection: A Study on Instance Selection and Channel Optimization

2025-04-01 21:47:57
Ian Mateos Gonzalez, Estefani Jaramilla Nava, Abraham S\'anchez Morales, Jes\'us Garc\'ia-Ram\'irez, Ricardo Ramos-Aguilar

Abstract

The identification of dermatological disease is an important problem in Mexico according with different studies. Several works in literature use the datasets of different repositories without applying a study of the data behavior, especially in medical images domain. In this work, we propose a methodology to preprocess dermaMNIST dataset in order to improve its quality for the classification stage, where we use lightweight convolutional neural networks. In our results, we reduce the number of instances for the neural network training obtaining a similar performance of models as ResNet.

Abstract (translated)

根据不同的研究,墨西哥的皮肤病识别是一个重要的问题。文献中的许多工作使用了不同数据仓库的数据集,但没有进行数据分析行为的研究,尤其是在医学图像领域。在这项工作中,我们提出了一种预处理dermaMNIST数据集的方法,以提高其在分类阶段的质量,我们在这一阶段采用了轻量级卷积神经网络。通过我们的方法,在减少用于神经网络训练的样本数量的同时,我们获得的模型性能与ResNet等其他模型相当。

URL

https://arxiv.org/abs/2504.01208

PDF

https://arxiv.org/pdf/2504.01208.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot