Paper Reading AI Learner

Towards Realistic Low-Light Image Enhancement via ISP Driven Data Modeling

2025-04-16 15:53:53
Zhihua Wang, Yu Long, Qinghua Lin, Kai Zhang, Yazhu Zhang, Yuming Fang, Li Liu, Xiaochun Cao

Abstract

Deep neural networks (DNNs) have recently become the leading method for low-light image enhancement (LLIE). However, despite significant progress, their outputs may still exhibit issues such as amplified noise, incorrect white balance, or unnatural enhancements when deployed in real world applications. A key challenge is the lack of diverse, large scale training data that captures the complexities of low-light conditions and imaging pipelines. In this paper, we propose a novel image signal processing (ISP) driven data synthesis pipeline that addresses these challenges by generating unlimited paired training data. Specifically, our pipeline begins with easily collected high-quality normal-light images, which are first unprocessed into the RAW format using a reverse ISP. We then synthesize low-light degradations directly in the RAW domain. The resulting data is subsequently processed through a series of ISP stages, including white balance adjustment, color space conversion, tone mapping, and gamma correction, with controlled variations introduced at each stage. This broadens the degradation space and enhances the diversity of the training data, enabling the generated data to capture a wide range of degradations and the complexities inherent in the ISP pipeline. To demonstrate the effectiveness of our synthetic pipeline, we conduct extensive experiments using a vanilla UNet model consisting solely of convolutional layers, group normalization, GeLU activation, and convolutional block attention modules (CBAMs). Extensive testing across multiple datasets reveals that the vanilla UNet model trained with our data synthesis pipeline delivers high fidelity, visually appealing enhancement results, surpassing state-of-the-art (SOTA) methods both quantitatively and qualitatively.

Abstract (translated)

最近,深度神经网络(DNN)已成为低光图像增强(LLIE)的领先方法。然而,尽管取得了显著进展,它们在实际应用中的输出仍然可能出现诸如放大噪声、错误白平衡或不自然增强等问题。关键挑战之一是缺乏能够捕捉低光条件和成像流程复杂性的多样化大规模训练数据。 为此,本文提出了一种新颖的基于图像信号处理(ISP)的数据合成管道,通过生成无限制配对训练数据来解决这些问题。具体来说,我们的管道从易于收集的高质量正常光照图像开始,并使用反向ISP首先将其未加工为RAW格式。然后,在RAW域直接合成低光退化情况。随后,生成的数据会经过一系列ISP阶段处理,包括白平衡调整、颜色空间转换、色调映射和伽马校正等,同时在每个阶段引入受控变化。这拓宽了降级范围,并增强了训练数据的多样性,使得生成的数据能够捕捉到广泛的降级情况以及ISP流程中的固有复杂性。 为了证明我们合成管道的有效性,我们在一个简单的UNet模型上进行了大量实验,该模型仅由卷积层、组归一化、GeLU激活和卷积块注意模块(CBAMs)组成。在多个数据集上的广泛测试表明,使用我们的数据合成管道训练的简单UNet模型能够提供高保真度且视觉效果良好的增强结果,在量化和定性评估中均超越了最先进的方法(SOTA)。

URL

https://arxiv.org/abs/2504.12204

PDF

https://arxiv.org/pdf/2504.12204.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot