Paper Reading AI Learner

ResNetVLLM -- Multi-modal Vision LLM for the Video Understanding Task

2025-04-20 00:20:18
Ahmad Khalil, Mahmoud Khalil, Alioune Ngom

Abstract

In this paper, we introduce ResNetVLLM (ResNet Vision LLM), a novel cross-modal framework for zero-shot video understanding that integrates a ResNet-based visual encoder with a Large Language Model (LLM. ResNetVLLM addresses the challenges associated with zero-shot video models by avoiding reliance on pre-trained video understanding models and instead employing a non-pretrained ResNet to extract visual features. This design ensures the model learns visual and semantic representations within a unified architecture, enhancing its ability to generate accurate and contextually relevant textual descriptions from video inputs. Our experimental results demonstrate that ResNetVLLM achieves state-of-the-art performance in zero-shot video understanding (ZSVU) on several benchmarks, including MSRVTT-QA, MSVD-QA, TGIF-QA FrameQA, and ActivityNet-QA.

Abstract (translated)

在这篇论文中,我们介绍了ResNetVLLM(基于ResNet的视觉大型语言模型),这是一种新的跨模态框架,用于零样本视频理解。该框架将基于ResNet的视觉编码器与大型语言模型(LLM)相结合。ResNetVLLM通过避免依赖于预训练的视频理解模型,并转而使用未经预训练的ResNet来提取视觉特征,解决了零样本视频模型所面临的挑战。这一设计确保了模型能够在统一架构内学习视觉和语义表示,从而提高了从视频输入中生成准确且上下文相关的文本描述的能力。我们的实验结果表明,ResNetVLLM在多个基准测试(包括MSRVTT-QA、MSVD-QA、TGIF-QA FrameQA 和 ActivityNet-QA)上的零样本视频理解(ZSVU)方面达到了最先进的性能水平。

URL

https://arxiv.org/abs/2504.14432

PDF

https://arxiv.org/pdf/2504.14432.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot