Paper Reading AI Learner

CompleteMe: Reference-based Human Image Completion

2025-04-28 17:59:56
Yu-Ju Tsai, Brian Price, Qing Liu, Luis Figueroa, Daniil Pakhomov, Zhihong Ding, Scott Cohen, Ming-Hsuan Yang

Abstract

Recent methods for human image completion can reconstruct plausible body shapes but often fail to preserve unique details, such as specific clothing patterns or distinctive accessories, without explicit reference images. Even state-of-the-art reference-based inpainting approaches struggle to accurately capture and integrate fine-grained details from reference images. To address this limitation, we propose CompleteMe, a novel reference-based human image completion framework. CompleteMe employs a dual U-Net architecture combined with a Region-focused Attention (RFA) Block, which explicitly guides the model's attention toward relevant regions in reference images. This approach effectively captures fine details and ensures accurate semantic correspondence, significantly improving the fidelity and consistency of completed images. Additionally, we introduce a challenging benchmark specifically designed for evaluating reference-based human image completion tasks. Extensive experiments demonstrate that our proposed method achieves superior visual quality and semantic consistency compared to existing techniques. Project page: this https URL

Abstract (translated)

最近的人体图像补全方法能够重建出合理的身体形状,但常常无法在没有明确参考图片的情况下保留独特的细节,比如特定的服装图案或独特的配饰。即使是目前最先进的基于参考图的修复技术也难以准确捕捉并整合来自参考图片的细微信息。为了解决这一局限性,我们提出了一种新的基于参考图的人体图像补全框架——CompleteMe。 CompleteMe采用了一种结合双U-Net架构和区域聚焦注意力(RFA)块的方法,该方法明确引导模型关注参考图片中的相关区域。这种方法能够有效地捕捉细微细节,并确保语义对应性的一致性和准确性,从而显著提高了完成图像的保真度和一致性。 此外,我们还引入了一个专门用于评估基于参考图的人体图像补全任务的新基准测试。广泛的实验表明,与现有技术相比,我们的方法在视觉质量和语义一致性方面都达到了优越水平。 项目页面:[此链接](https://this_https_URL/)(请将URL替换为实际的网页地址)

URL

https://arxiv.org/abs/2504.20042

PDF

https://arxiv.org/pdf/2504.20042.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot