Paper Reading AI Learner

PixelHacker: Image Inpainting with Structural and Semantic Consistency

2025-04-29 05:28:36
Ziyang Xu, Kangsheng Duan, Xiaolei Shen, Zhifeng Ding, Wenyu Liu, Xiaohu Ruan, Xiaoxin Chen, Xinggang Wang

Abstract

Image inpainting is a fundamental research area between image editing and image generation. Recent state-of-the-art (SOTA) methods have explored novel attention mechanisms, lightweight architectures, and context-aware modeling, demonstrating impressive performance. However, they often struggle with complex structure (e.g., texture, shape, spatial relations) and semantics (e.g., color consistency, object restoration, and logical correctness), leading to artifacts and inappropriate generation. To address this challenge, we design a simple yet effective inpainting paradigm called latent categories guidance, and further propose a diffusion-based model named PixelHacker. Specifically, we first construct a large dataset containing 14 million image-mask pairs by annotating foreground and background (potential 116 and 21 categories, respectively). Then, we encode potential foreground and background representations separately through two fixed-size embeddings, and intermittently inject these features into the denoising process via linear attention. Finally, by pre-training on our dataset and fine-tuning on open-source benchmarks, we obtain PixelHacker. Extensive experiments show that PixelHacker comprehensively outperforms the SOTA on a wide range of datasets (Places2, CelebA-HQ, and FFHQ) and exhibits remarkable consistency in both structure and semantics. Project page at this https URL.

Abstract (translated)

图像修复是图像编辑和图像生成领域中的一个基本研究方向。最近的最先进的(SOTA)方法探索了新颖的注意力机制、轻量级架构以及上下文感知建模,展现了令人印象深刻的表现力。然而,它们在处理复杂结构(例如纹理、形状及空间关系)和语义信息(如颜色一致性、对象恢复及逻辑正确性)时常常遇到困难,导致生成图像中出现伪影或不合适的细节。为解决这一挑战,我们设计了一种简单但有效的修复范式,称为潜在类别引导,并进一步提出了一种基于扩散模型的方法,命名为PixelHacker。 具体而言,我们首先构建了一个包含1400万张图像-掩膜对的大型数据集,通过标注前景和背景(分别为116个和21个潜在类别)来创建。接着,我们分别通过对两个固定大小的嵌入编码潜在前景和背景表示,并在去噪过程中间歇地注入这些特征,使用线性注意力机制完成这一过程。最后,在我们的数据集上进行预训练并在开源基准测试中进行微调之后,得到了PixelHacker模型。 广泛的实验表明,PixelHacker在多个数据集(Places2、CelebA-HQ 和 FFHQ)上的表现全面超越了最先进的方法,并且无论是在结构还是语义方面都展现出了卓越的一致性。项目页面在此 https URL.

URL

https://arxiv.org/abs/2504.20438

PDF

https://arxiv.org/pdf/2504.20438.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot