Abstract
The rising popularity of immersive visual experiences has increased interest in stereoscopic 3D video generation. Despite significant advances in video synthesis, creating 3D videos remains challenging due to the relative scarcity of 3D video data. We propose a simple approach for transforming a text-to-video generator into a video-to-stereo generator. Given an input video, our framework automatically produces the video frames from a shifted viewpoint, enabling a compelling 3D effect. Prior and concurrent approaches for this task typically operate in multiple phases, first estimating video disparity or depth, then warping the video accordingly to produce a second view, and finally inpainting the disoccluded regions. This approach inherently fails when the scene involves specular surfaces or transparent objects. In such cases, single-layer disparity estimation is insufficient, resulting in artifacts and incorrect pixel shifts during warping. Our work bypasses these restrictions by directly synthesizing the new viewpoint, avoiding any intermediate steps. This is achieved by leveraging a pre-trained video model's priors on geometry, object materials, optics, and semantics, without relying on external geometry models or manually disentangling geometry from the synthesis process. We demonstrate the advantages of our approach in complex, real-world scenarios featuring diverse object materials and compositions. See videos on this https URL
Abstract (translated)
沉浸式视觉体验的日益流行增加了对立体3D视频生成的兴趣。尽管在视频合成方面取得了显著进展,但由于缺乏3D视频数据,创建高质量的3D视频仍然颇具挑战性。我们提出了一种简单的方法,将文本到视频的生成器转变为视频到立体视图的生成器。给定输入视频后,我们的框架能够自动生成从稍有不同的视角拍摄的画面帧,从而产生引人入胜的3D效果。 以往和目前针对此任务的方法通常分为多个阶段:首先估计视频中的视差或深度信息;然后根据这些信息将视频画面扭曲以产生第二视角;最后进行不可见区域的填充。这种方法在处理包含镜面反射表面或透明物体的场景时会失效,因为单一层次的视差估算在这种情况下是不够的,会导致错误的像素偏移和伪影。 我们的工作通过直接合成新的视角来绕过这些限制,而无需依赖任何中间步骤。我们利用预先训练好的视频模型对几何、材质、光学及语义的理解,在不依赖外部几何模型或手动分离几何信息的情况下实现这一点。我们在包含各种物体材料和组成的复杂现实场景中展示了我们方法的优势。 请参见此网址上的相关视频:[链接](在实际应用中,请插入正确的URL地址)。
URL
https://arxiv.org/abs/2505.00135