Paper Reading AI Learner

DFA-CON: A Contrastive Learning Approach for Detecting Copyright Infringement in DeepFake Art

2025-05-13 13:23:52
Haroon Wahab, Hassan Ugail, Irfan Mehmood

Abstract

Recent proliferation of generative AI tools for visual content creation-particularly in the context of visual artworks-has raised serious concerns about copyright infringement and forgery. The large-scale datasets used to train these models often contain a mixture of copyrighted and non-copyrighted artworks. Given the tendency of generative models to memorize training patterns, they are susceptible to varying degrees of copyright violation. Building on the recently proposed DeepfakeArt Challenge benchmark, this work introduces DFA-CON, a contrastive learning framework designed to detect copyright-infringing or forged AI-generated art. DFA-CON learns a discriminative representation space, posing affinity among original artworks and their forged counterparts within a contrastive learning framework. The model is trained across multiple attack types, including inpainting, style transfer, adversarial perturbation, and cutmix. Evaluation results demonstrate robust detection performance across most attack types, outperforming recent pretrained foundation models. Code and model checkpoints will be released publicly upon acceptance.

Abstract (translated)

近期,用于视觉内容创作的生成式人工智能工具(特别是针对视觉艺术作品)的普及引发了关于版权侵权和伪造的严重担忧。训练这些模型所使用的大型数据集通常包含受版权保护的艺术作品与不受版权保护的作品混合在一起的情况。鉴于生成性模型倾向于记住训练模式,它们在不同程度上容易发生版权侵犯行为。 在此背景下,本工作借鉴了最近提出的DeepfakeArt挑战基准测试,并引入了一种名为DFA-CON的对比学习框架,旨在检测侵权或伪造的人工智能生成的艺术作品。该框架通过构建一个区分性的表示空间,在对比学习框架内促进原始艺术作品与其被伪造版本之间的关联性。 模型在多种攻击类型下进行训练,包括图像修复(inpainting)、风格转换、对抗性扰动和混合剪切(cutmix)。评估结果显示,在大多数攻击类型下,该方法具有强大的检测性能,并且优于最近预训练的基础模型。本研究的代码和模型检查点将在接受后公开发布。

URL

https://arxiv.org/abs/2505.08552

PDF

https://arxiv.org/pdf/2505.08552.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot