Paper Reading AI Learner

Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments

2025-08-31 01:45:56
Yi-Chun Chen, Arnav Jhala

Abstract

Recent advances in large language models(LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation(PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.

Abstract (translated)

最近在大型语言模型(LLMs)方面的进展使得生成引人入胜的故事成为可能,但将叙述文本与可玩的视觉环境联系起来仍然是程序化内容生成(PCG)中的一个开放性挑战。我们提出了一种轻量级流水线,能够将简短的故事提示转换为一系列2D基于瓷砖的游戏场景,这些场景反映了故事的时间结构。 给定由大型语言模型生成的叙述文本后,我们的系统会识别出三个关键时间框架,并提取空间谓词的形式化为“对象-关系-对象”三元组。然后使用带有GameTileNet数据集中感知功能的语义嵌入来检索视觉资产。地形通过细胞自动机分层生成,而根据谓词结构的空间规则放置物体。 我们在十种不同类型的故事情节中评估了该系统,分析了瓷砖与物体之间的匹配度、功能层次的一致性以及跨框架的空间约束满足情况。 这一原型提供了一种基于叙事驱动场景生成的可扩展方法,并为未来工作奠定了基础,这些未来的工作将涉及多帧连续性、符号跟踪和以故事为中心的多智能体协调。

URL

https://arxiv.org/abs/2509.04481

PDF

https://arxiv.org/pdf/2509.04481.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot