Paper Reading AI Learner

CoLLM-NAS: Collaborative Large Language Models for Efficient Knowledge-Guided Neural Architecture Search

2025-09-30 10:12:49
Zhe Li, Zhiwei Lin, Yongtao Wang

Abstract

The integration of Large Language Models (LLMs) with Neural Architecture Search (NAS) has introduced new possibilities for automating the design of neural architectures. However, most existing methods face critical limitations, including architectural invalidity, computational inefficiency, and inferior performance compared to traditional NAS. In this work, we present Collaborative LLM-based NAS (CoLLM-NAS), a two-stage NAS framework with knowledge-guided search driven by two complementary LLMs. Specifically, we propose a Navigator LLM to guide search direction and a Generator LLM to synthesize high-quality candidates, with a dedicated Coordinator module to manage their interaction. CoLLM-NAS efficiently guides the search process by combining LLMs' inherent knowledge of structured neural architectures with progressive knowledge from iterative feedback and historical trajectory. Experimental results on ImageNet and NAS-Bench-201 show that CoLLM-NAS surpasses existing NAS methods and conventional search algorithms, achieving new state-of-the-art results. Furthermore, CoLLM-NAS consistently enhances the performance and efficiency of various two-stage NAS methods (e.g., OFA, SPOS, and AutoFormer) across diverse search spaces (e.g., MobileNet, ShuffleNet, and AutoFormer), demonstrating its excellent generalization.

Abstract (translated)

大型语言模型(LLMs)与神经架构搜索(NAS)的结合为自动设计神经网络结构带来了新的可能性。然而,大多数现有方法面临着诸如架构无效性、计算效率低下以及相较于传统NAS性能较差的关键限制。在此项研究中,我们提出了基于协作大语言模型的神经架构搜索框架(CoLLM-NAS),这是一个两阶段的NAS框架,由两个互补的大语言模型驱动的知识引导搜索,并配备了一个专用的协调模块来管理它们之间的互动。 具体来说,我们提出了一种导航器大语言模型来指导搜索方向,并且还设计了一个生成器大语言模型来合成高质量候选结构。此外,还有一个专有的协调模块负责管理和促进这两种大语言模型之间的协作过程。CoLLM-NAS通过结合大语言模型对结构化神经架构的固有知识以及从迭代反馈和历史轨迹中获得的进步性知识,有效地引导搜索流程。 在ImageNet和NAS-Bench-201数据集上的实验结果表明,CoLLM-NAS超越了现有的NAS方法和传统的搜索算法,并取得了新的最先进的性能。此外,在不同的搜索空间(例如MobileNet、ShuffleNet以及AutoFormer)上对各种两阶段NAS方法(如OFA、SPOS和AutoFormer)进行评估时,CoLLM-NAS持续提高了这些方法的性能和效率,展示了其卓越的泛化能力。

URL

https://arxiv.org/abs/2509.26037

PDF

https://arxiv.org/pdf/2509.26037.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot